Wiktor: Wyznacz te wartości parametru m, dla których nierówność jest spełniona przez każdą liczbę rzeczywistą. (m 2 +4m−5)x 2 −2 (m−1)x+2
dowód Radek: Niech m ,n ∈ R + , udowodnij, że jeżeli m + n = 1 to prawdziwa jest nierówność 1 1 +≥4 m n 1≥4mn /4 21 lut 20:06 Mila: dalej tak: m,n∊ i m+n=1⇔m=1−n Zbadamy jakie wartości przyjmuje funkcja f(n)=n*(1−n) f(n)=n−n2 f(n)=−n2+n −1 1 nw== −2 2 1 1 1 1 f()=−+= najwieksza wartość funkcji f(n)⇔ 2 4 2 4 21 lut 20:22 Saizou : skorzystaj z nierówności o średnich teraz np. am≥gm 21 lut 20:24 Radek: I to jest prawidłowo ? Nie trzeba pisać żadnych komentarzy ? 21 lut 20:24 Saizou : ech czemu napisałem am≥gm miało być am≥hm 1 1 +≥4m n 21 lut 20:33 Mila: Po wykonaniu przekształceń równoważnych otrzymano nierówność prawdziwą, zatem nierówność: 1 1 +≥4 jest prawdziwa dla podanych n Możesz wykażać inaczej, jak radzi Saizou. Jednak chyba będzie to trudniejsze. 21 lut 20:36 Radek: A to nie jest tak, że to powinno się przepisywać od końca ? Zrobić na brudno i potem przepisać ? Tak czytałem. 21 lut 20:37 Saizou : na poziomie LO, co jest dziwne, można wychodzić od tezy, ale wtedy ładniej wygląda dowód nie wprost n. dla Twojego zadania, Dowód nie wprost zakładam że teza jest fałszywa, czyli 1 1 + 0 . x4−x3+x2+x2−x+1>0 x2(x2−x+1)+(x2−x+1)>0 (x2−x+1)(x2+1)>0 Δ0 dla każdego x∊R i x2−x+1 >0 dla każdego x∊R , bo brak miejsc zerowych i parabola ramionami do góry to (x2−x+1)*(x2+1) >0 dla x∊R 21 lut 22:39 Radek: A czy mogła by Pani jeszcze pomóc mi w kilku zadaniach ? 21 lut 22:40 Mila: Pisz, pomożemy. Albo ja albo Eta. 21 lut 22:47 Eta: 21 lut 22:47 Mila: Eto Jak dzisiaj głowa? Pogoda sprzyja? 21 lut 22:49 Eta: Witaj Mila O tak, dzisiaj już jest ok 21 lut 22:50 Radek: Uzasadnij, że jeżeli a,b,c,d są liczbami dodatnimi to (a+b)(c+d)≥4√abcd. (a+b)(c+d)≥4√abcd (ac+ad+bc+cd)2≥4abcd Tędy droga ? 21 lut 22:51 Eta: Wskazówka : a+b≥2√ab i c+d≥2√ab i pomnóż stronami ( bo obydwie strony dodatnie) 21 lut 22:55 Saizou : skorzystaj z nierówności o średnich am≥gm a+b≥2√ab c+d≥2√cd −−−−−−−−−−−−−−−mnożąc stronami bo L i P≥0 (a+b)(c+d)≥4√abcd 21 lut 22:56 Eta: 21 lut 22:57 Radek: Nie znam tych zależności i nie wiem kiedy ich uzywać więc wolę inne sposoby. 21 lut 22:59 Saizou : Eta jednak średnie nie idą na marne xd 21 lut 22:59 Eta: No to tak: (√a−√b)2≥0 ⇒ a−2√2ab+b ≥0 ⇒ a+b≥2√ab 21 lut 23:01 zombi: Ewentualnie jak nie znasz nierówności Cauchy'ego możesz na chama, tzn. (a+b)(c+d) ≥ 4√abcd ac + ad + bc + bd ≥ 4√abcd (√ac)2 − 2√abcd + (√bd)2 + (√ad)2 − 2√abcd + (√bc)2 = (√ac−√bd)2 + (√ad − √bc)2 ≥ 0 Chyba się nie machnąłem 21 lut 23:02 Radek: Ale ja tam nie mam (√a−√b)2 ? więc skąd się to bierze ? 21 lut 23:02 zombi: Sorki Eta nie wiedziałem, że piszesz, bo sam byłem w trakcie 21 lut 23:02 Radek: Może ktoś wytłumaczyć bez podawania całego rozwiązania od A do Z ? Takie rozwiązanie to mogę znaleźć w internecie... 21 lut 23:08 Eta: Radek nie denerwuj się Takie zależności trzeba znać: bo są bardzo pomocne przy tego typu dowodach np: a2+b2≥2ab lub podobnie a+b ≥2√ab 21 lut 23:12 Radek: Nie denerwuję się tylko proszę o wyjaśnienie. Jak ktoś napisze mi gotowca bez wyjaśnienia to ja nic nie zrozumiem. Ktoś to umie to napisze i do niego jest wszystko jasne, a ja nie rozumiem i dlatego nie chcę gotowców, bo chcę się nauczyć. Ale skąd tam (√a−√b)2 ? 21 lut 23:16 zombi: Eta podała to jako przykład, tylko zamiast a i b musisz dobrać takie liczby, że pasowało do twojego zadania. Patrz na moje rozwiązanie. 21 lut 23:19 Eta: Z takiej zależności (√a−√b)2≥0 −−− która jest zawsze prawdziwa dla a>0 i b>0 otrzymujesz: a−2√ab+b2≥0 , a z niej masz prawdziwą zależność a+b≥2√ab a+b a z niej ,że ≥√ab −−−− to jest nierówność między średnimi am−gm 2 o której pisał Ci Saizou 21 lut 23:21 Radek: a czemu nie np (√c−√d)2 ? 21 lut 23:23 Saizou : ale liczby a,b są umowne równie dobrze mogą być ś,ć ≥0 21 lut 23:24 Eta: No i identycznie (√c−√d)2≥0 ⇒ c+d≥2√cd tak samo dla każdych innych literek >0 np: (√x−√y)2≥0 ⇒ x+y≥2√xy , dla x, y >0 jasne już? 21 lut 23:25 Radek: A w tym zadaniu może być (√a−√c)2 i (√b−√d)2 ? 21 lut 23:27 Mila: Radek, stosujemy różne zależności . Znasz wzory skróconego mnożenia. (a−b)2≥0 dla a,b∊R ta nierówność jest oczywista. ⇔a2−2ab+b2≥0⇔ a2+b2≥2ab Popatrz co napisała Eta My chcemy mieć wyrażenie z pierwiastkiem z prawej strony (√a−√b)2≥0 rozwijamy a−2√ab+b≥0 a+b≥2√ab skorzystałeś z wzoru skróconego mnożenia dla takich dwóch wyrazów aby pasowało do Twojego problemu. podobnie (√c−√d)2≥0⇔ c+d≥2√cd (a+b)*(c+d)≥2√ab*2√cd (a+b)*(c+d)≥4√a*b*c*d Cnw. II sposób Może prościej skorzystac z tego, że : a+b średnia arytmetyczna liczb a i b jest większa lub równa od średniej geometrycznej2 tych liczb √a*b co zapisujemy: a,b,c,d∊R+ a+b≥2√ab c+d≥2{cd} mnozymy stronami (są dodatnie) (a+b)*(c+d)≥4√a*b*c*d cnw 21 lut 23:28 Radek: Dziękuję, tylko ja bym nigdy nie pomyślał o takim rozwiązaniu zadania. 21 lut 23:32 Eta: 21 lut 23:34 Mila: O jakim? 21 lut 23:34 Radek: O rozwiązaniu ze średnimi. 21 lut 23:35 Mila: A przecież znasz tę zależność? Czy zapomniałeś? √3*12=√36=6 7,5>6 21 lut 23:41 Radek: Średnia arytmetyczna jest większa od średniej geometrycznej. 21 lut 23:42 Saizou : kw≥am≥gm≥hm (zapiszę to teraz dla 2 składników a,b) a2+b2 a+b 2 √≥≥√ab≥ 2 2 1 1 +a b 22 lut 09:04 Radek: Wykaż, że jeżeli α jest kątem ostrym spełniającym warunek tg2α−3=0 to sinα > co sα . sin2α−3cos2α sin2α−3−3sin2α=0 Dobrze to zacząłem 22 lut 18:21 Saizou : w sumie tak możesz, wyliczyć sinus i cosinus i porównać xd 22 lut 18:23 Saizou : ale łatwiej tg2α=3 ltgαl=√3 a skoro α jest kątem ostrym to α=60o 22 lut 18:25 Radek: −2sin2α−3=0 2sin2α=−3 22 lut 18:26 Saizou : ale masz źle sin2x−3cos2x=0 sin2x−3(1−sin2x)=0 sin2x−3+3sin2x=0 4sin2x=3 22 lut 18:28 Radek: Dzięki 22 lut 18:30 Mila: x∊(0,900) tg2(x)−3=0⇔ (tgx−√3)*(tgx+√3=0 i tgx>0⇔ π √3 1 π sin=>=cos 3 2 2 3 22 lut 18:34 Radek: To to ma być równanie czy nierówność ? 22 lut 18:35 Mila: Z równania obliczasz x (kąt) , potem sinx, cosx i wykazujesz nierówność. 22 lut 18:38 Saizou : z równania otrzymasz kąt α=60o a potem pokazujesz że sin60>cos60 22 lut 18:38 Radek: czyli mam wyliczać i sin i cos ? 22 lut 18:41 Saizou : tak 22 lut 18:43 Radek: A może ktoś pokazać interpretację graficzną nierówności logarytmicznych ? na dowolnym przykładzie ? 22 lut 18:45 Radek: Uzasadnij, że jeśli liczby rzeczywiste a,b,c spełniają nierówności 0 /63 2 2a+2b+2c>3a+3b −a−b+2c>0 ? 22 lut 18:54 Saizou : z założenia a0 Iloczyn liczb o różnych znakach jest liczbą ujemną. Popatrz na wykres. 22 lut 20:43 Radek: Udowodnij, że dla dowolnych liczb dodatnich a,b,c i d prawdziwa jest nierówność ac + bd ≤ √a2+b2*√c2d2 /2 a2c2+2abcd+b2d2≤(a2+b2)(c2+d2) −a2d2+2abcd−b2c2≤0 / (−1) a2d2−2abcd+b2c2≥0 (ad−bc)2≥0 23 lut 19:46 bezendu: ok jest 23 lut 20:03 Radek: a 1 2a Wykaż, że jeżeli a > 0 ,+≥ 2 2a2 a3+1 2a3+3 2a ≥4a2 a3+1 (2a3+3)(a3+1)≥2a*4a2 2a6+2a3+3a3+3−8a2≥0 2a6−5a3−8a2+3≥0 23 lut 20:55 Radek: ? 23 lut 21:20 zawodus: 2 linijka już źle dodałeś 23 lut 21:21 Radek: Fakt, dzięki 23 lut 21:22 Radek: Udowodnij, że dla każdej liczby naturalnej n większej od 1 prawdziwa jest nierówność (2n−2)!*(2n−1)*(2n) >2n(2n−1)!*2 2n2−2n>2n 2n2−4n>0 n2−2>0 (n−√2)(n+√2)>0 23 lut 22:19 Mila: Błędy w przekształceniu. 23 lut 22:33 Radek: Tzn w którym miejscu ? 23 lut 22:34 Mila: (2n)! (2n−2)!*(2n−1)*(2n) === (2n−2)!*2 (2n−2)!*2 =(2n−1)*n 23 lut 22:49 Radek: 2n2−n−2n>0 2n2−3n>0 n(2n−3)>0 ? 23 lut 22:53 23 lut 22:56 Radek: ? 23 lut 23:48 Mila: No rozwiąż nierówność w zbiorze N+, sprawdź z założeniem. 24 lut 16:13 Radek: ale tu jest parabola ? 24 lut 16:15 Mila: No to co? nie umiesz rozwiązywać nierówności kwadratowych? W czym problem? 24 lut 16:18 Piotr 10: Po co tak, możesz od razu z założenia zauważyć , że n > 0, z założenia 2n−3 > 0 gdyż wiemy, że z założenia n > 1 24 lut 16:20 Radek: Umiem, ale to wszystko w tym dowodzie ? 24 lut 16:20 Mila: Radek , widzisz prawdziwość nierówności? (patrz komentarz Piotra) 24 lut 16:23 Radek: Wiem jak to rozwiązać ale nie widzę tutaj nic. 24 lut 16:29 Mila: n*(2n−3)>0 i (n∊N+ i n>1) 3 n i n∊N+ i n>1⇔ 2 n∊{2,3,4,5,...} Wykazałeś,że Pierwsza nierówność jest prawdziwa dla (n∊N+ i n>1) 24 lut 16:35 Radek: czemu n0 parabola skierowana do góry 3 n ale n<0 nie odpowiada założeniom, bo n∊N+, to ten przypadek odrzucamy. 2 24 lut 17:13 Radek: Chyba rozumiem, dziękuję. 24 lut 17:22 Mila: Załóż nowy wątek. 24 lut 17:39
Która nierówność jest Prawdziwa ? A. 0,31 > 0,1199 B. 0,31 < 0,3 C. 0,31 > 0,310 D. 0,301 > 0,31 PLS O SZYBKĄ ODP
© ® Media Nauka 2008-2022 r. Drogi Internauto! Aby móc dostarczać coraz lepsze materiały i usługi potrzebujemy Twojej zgody na zapisywanie w pamięci Twojego urządzenia plików cookies oraz na dopasowanie treści marketingowych do Twojego zachowania. Dzięki temu możemy utrzymywać nasze cookies w celach funkcjonalnych oraz w celu tworzenia anonimowych statystyk. Ddbamy o Twoją udzielić nam zgody na profilowanie i remarketing musisz mieć ukończone 16 lat. Brak zgody nie ograniczy w żaden sposób treści naszego serwisu. Udzieloną nam zgodę w każdej chwili możesz wycofać w Polityce prywatności lub przez wyczyszczenie historii zgody oznacza wyłączenie profilowania, remarketingu i dostosowywania treści. Reklamy nadal będą się wyświetlać ale w sposób przypadkowy. Nadal będziemy używać zanonimizowanych danych do tworzenia statystyk serwisu. Dalsze korzystanie ze strony oznacza, że zgadzasz się na takie użycie się z naszą Polityką ZGODY ZGODA
Która nierówność jest prawdziwa? 2014-12-19 18:40:24 Którą z liczb należy wstawić w miejsce gwiazdki,aby nierówność *